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10. SYLOW SUBGROUPS 
 

§10.1. Sylow Subgroups 
 Let G be an abelian group written additively. If p is 

a prime then the Sylow p-subgroup is defined to be:  

Sylp(G) = {g  G | png = 0 for some n}. It is easy to show 

that this is a subgroup. 

 Written multiplicatively it becomes 

{g  G | gpn
 = 1 for some n}. 

This is the set of all elements whose order is a power of p 

but if G is non-abelian this set is usually not a subgroup 

and has no significance. 

 

Example 1: If G = S3 then {g  G | g2n
 = 1 for some n} 

= {I, (12), (13), (23)}, which is certainly not a subgroup. 

 

 If p is prime, a p-group is a group where the order 

of every element is a power of p. If G is a finite p-group 

then its order is a power of p. This is because, if |G| was 

divisible by any other prime, there would have to be an 

element of that order.  

 If G is a finite group and pn is the largest power of 

p that divides |G| then, by Lagrange’s Theorem, the 

largest possible order for a p-subgroup will be pn. But 

Lagrange’s Theorem does not guarantee that this 

maximum will be attained. However, it is indeed true, as 

I will show. If pn is the largest power of p that divides |G| 
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then G has a subgroup (possibly 

many) of order pn. They are called 

the Sylow p-subgroups of G, 

named after the Norwegian 

mathematician Ludwig Sylow 

[1832 – 1918]. 

 The three Sylow theorems 

not only assert the existence of 

Sylow subgroups for all primes 

but also give information about the numbers of Sylow 

subgroups. We will not follow Sylow’s original proofs, 

but instead use a proof due to Wielandt that uses the 

concept of groups acting on sets. 

 

§10.2. Actions of Groups on Sets 
 If G is a group, a G-set is a set, X, together with a 

function : X  G → X such that: 

(1) x  1 = x for all x  X and 

(2) (x  g)  h = x  (gh) for all x  X and 

                                                        g, h  G. 

If X is a G-set we say that G acts on the set X. 

 

 A G-set is a sort of primitive vector space. The 

underlying set is just a set, not an abelian group, and the 

scalars come from a group, not a field. Instead of writing 

v we write multiplication by a scalar as   v. The fact 

that we have not so many axioms for a G-set as we do for 

a vector space reflects the fact that the set X has no 
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structure itself and the system of scalars here is a group, 

which has less structure than a field. 

 Another similar situation is where we have a 

representation of a group. Here the underlying structure is 

a vector space, while the scalars are the elements of a 

group. 

 

The stabiliser of a subset Y of a G-set X is defined to be 

(Y) = {g  G | y  g = x for all y  Y}. 

In the case where Y = {x} we write (x) instead of ({x}). 

 

Example 2: Let X = {1, 2, 3, 4, 5, 6} and G = D8. 

Define x  g as follows: 

* 1 A A2 A3 B AB A2B A3B 

1 1 2 1 2 6 3 6 3 

2 2 1 2 1 3 6 3 6 

3 3 6 3 6 2 1 2 1 

4 4 4 4 4 5 5 5 5 

5 5 5 5 5 4 4 4 4 

6 6 3 6 3 1 2 1 2 

 

  (1) = {1, A2}; 

  (2) = {1, A2}; 

  (3) = {1, A2}; 

  (4) = {1, A, A2, A3}; 

  (5) = {1, A, A2, A3}; 

  (6) = {1, A2}; 

  (X) = {1, A2}. 
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Theorem 1: (1) If X is a G-set and Y  X then (Y) is a 

subgroup of G. 

                     (2) (X) G and G/(X) is isomorphic to a 

group of permutations on X. 

Proof: The fact that (Y) is a subgroup of G is easily 

checked. 

If S(X) denotes the symmetric group (the group of all 

permutations) on X the function : G → S(X) defined by 

(g)(x) = x  g is a group homomorphism whose kernel is 

(X). The image is a subgroup of S(X). ☺ 

 

 A G-set X is defined to be faithful if (X) is trivial. 

Example 2 is an example of a non faithful (we never say 

‘unfaithful’) G-set. 

 If X is a faithful G-set the group G is actually 

isomorphic to a group of permutations because (X) is 

trivial. Think of the group of permutations as a ‘faithful 

copy’ of the group G, being isomorphic to it. If a G-set 

isn’t faithful the group of permutations is a scaled down 

version of G, being isomorphic to G/(X). 

 

 At the other extreme, a G-set X is defined to be 

trivial if (X) = G. Here g  x = x for all g  G and all 

x  X. 

(This is similar to the trivial representation of a group.)  
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Theorem 2 (CAYLEY): Every finite group G is 

isomorphic to a group of permutations on G. 

Proof: G acts on itself by defining g  h = gh and the 

resulting G-set is faithful. (In other words, right 

multiplication by an element of G permutes the elements 

of G.) ☺ 

This action is called the regular action of G on G. It is 

similar to the regular representation. 

 

Examples 3: 

(1) The conjugation action of G on G defined by 

x  g = xg = g−1xg. 

 

(2) An isometry f:ℝ3 → ℝ3 is a distance preserving 

transformation. They are maps of the form f(x) = Ax + b 

where A is an orthogonal 3  3 matrix and b  ℝ3. The 

set of all isometries of ℝ3 form a group G under 

composition and we can think of ℝ3 as a G-set with f  v 

defined as f(v). 

 

§10.3. Orbits 
 Suppose X is a G-set and let x  X. The set of all 

those elements of X that can be reached from x by 

multiplying by some element of G is called the orbit 

containing x. In fact the relation ~ defined on X by x  y 

if x  g = y for some g  G, is an equivalence relation and 

the equivalence classes are the orbits. We denote the orbit 

containing  x  by xG. The set of orbits is denoted by X/G. 

A G-set is defined to be transitive if it has only one orbit. 
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Examples 4: 

(1) If G is viewed as a G-set under the action of 

conjugation then the orbits are the conjugacy classes 

and the stabiliser of g is the centraliser CG(g). 

(2) If H  G then G can be viewed as an H-set under the 

action g  h = gh.  The orbits are the right cosets of H 

and the stabiliser of g is the trivial subgroup. 

 

Theorem 3: If G is finite and X is a G-set 

#xG = |G : (x)|. 

Proof: x  g = x  h  x  (gh−1) = x 

                                  gh−1  (x) 

                                  g(x) = h(x). 

So f(x  g) = g(x) is a well-defined 1-1 and onto map 

between the orbit of x and the set of right cosets of the 

stabiliser (x). ☺ 

 

This generalises the result that says that the number of 

conjugates is the index of the centraliser. 

 

Example 2 (continued): 

The orbits are {1, 2, 3, 6} and {4, 5}. 

So 2G = {1, 2, 3, 6} and #2G = 4, |(2)| = 2, and 

|G:(2)| = 4. #4G = 2 = |G : (2)|. 
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§10.4. Cauchy’s Theorem 
 Let X be a G-set. Then XG is defined to be 

{x  X | x  g = x for all g  G}. 

 

Example 5: Let G = S3 and X = {1, 2, 3, 4, 5} where G 

acts on X in the natural way. Then since the symbols 4, 5 

are always fixed by the elements of G and the others are 

not, XG = {4, 5}. 

 

Theorem 4: If G is a finite p-group and X is a finite G-

set then |X|  |XG| (mod p). 

Proof: Suppose |G| = pn and let x  X and let xG denote 

the orbit of x. 

Then pn = |G| = |G:(x)|.|(x)| = |xG|.|(x)|. 

Either |xG| = 1 or |xG|  0(mod p). 

But |xG| = 1 means that x  XG. Since X is the disjoint 

union of orbits the result follows. ☺ 

 

Corollary: If G is a finite p-group and X is a finite G-set 

whose size is not divisible by p then there exists an 

element x  X such that x  g = x for all g  G. 

 

 This gives another way of expressing the proof of 

Cauchy’s theorem. 

 

Theorem 5 (CAUCHY): If p is a prime divisor of |H| 

there exists an element of H of order p. 

Proof:  Apply the corollary to G = A | Ap and 
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X = {(g1, ... , gp) | each gi  H with not all gi = 1, 

                                               but the product g1...gp = 1}. 

Then |X| = |H|p−1 − 1, which is not divisible by p. 

 

 The action of G on X is given by: 

(g1, ... , gp)  A = (g2, ... , gp, g1). 

By the corollary there exists (g1, ... , gp) with 

(g1, ... , gp)  A = (g1, ... , gp). 

So g1 = g2 = ... = gp. Call this g. Then gp = 1. ☺ 

 

Example 6: If |G| = 105 = 3  5  7 there must be 

elements of orders 3, 5 and 7. And of course there’s the 

identity with order 1. The other possible orders, by 

Lagrange’s Theorem, are 15, 21, 35 and (only if G is 

cyclic) 105. But unlike 3, 5 and 7 there are no guarantees. 

 

 By Lagrange’s Theorem, if |G| = pn, where p is 

prime, the orders of the elements must be powers of p. 

The converse also holds. If, in a finite group, the orders 

of all the elements are powers of p then the order of the 

group must be a power of p. For if not, and q is a different 

prime divisor of the group order, there would have to be 

an element of order q. 

 

Example 7: A5 has order 60 but has no subgroup of order 

30, even though 30 divides 60 (but of course it isn’t prime 

power). The reason why no such subgroup exists is 

because such a subgroup would have to be a normal 
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subgroup (subgroups of index 2 are normal) and A5 is 

simple. 

 

§10.5. Normalisers 
If H  G and g  G we define 

Hg = g−1Hg = {g−1hg | h  H}. 

It is called the conjugate of H by g. The normaliser of a 

subgroup H  G is defined by 

NG(H) = {g | Hg = H}. 

 

It is easily checked that H  NG(H)  G, and in fact NG(H) 

is the largest subgroup in which H is normal. It is also 

obvious that NH(G) always contains Z(G). 

 

Theorem 6: The number of conjugates of H in G is 

|G : NG(H)|. 

Proof: Let N = NG(H), let X be the set of conjugates of H 

in G and let R be the set of left cosets Ng in G.  We define 

a function f: R → X by f(Ng) = Hg. 

If Ng1 = Ng2 then g2 = bg1 for some b  N. 

Then Hg2 = Hbg1 = Hg1. Hence f is well-defined. 

If Hg2 = Hg1 then Hg2g1
−1

 = H and so g2g1
−1  N. 

Hence Ng1 = Ng2. 

We have thus shown that f is 1-1. 

Clearly f is onto.  Hence |X| = |R| = |G : N|. ☺ 
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 A maximal subgroup of G is a subgroup H < G 

where there is no subgroup K for which H < K < G. 

Minimal subgroups are defined similarly. By Lagrange’s 

Theorem subgroups of prime order are minimal. By 

Cauchy’s Theorem the converse is true: minimal 

subgroups have prime order. 

Also, by Lagrange’s Theorem, subgroups of index 

p are maximal. Here the converse is not always true. A 

maximal subgroup may not have prime index. However, 

we’ll show that it’s true for finite p-groups. 

 

For p-groups the converse of Lagrange’s Theorem holds. 

If |G| = pn then G has subgroups of order pr for all r with 

0  r  n. 

 

Example 8: If G = S4 and H = S3, fixing the symbol 4, 

then H has index 4 in G. However it is maximal. The 

reason is as follows. If K was a subgroup between H and 

G then |G:K| =2. So |K| = 12 and, having index 2 it would 

have to be normal in G. But the only normal subgroup of 

order 12 in S4 is A4 (example 17 of chapter 6), so K = A4. 

But H contains (123) and so isn’t a subgroup of A4. So we 

get a contradiction. 

 

 The next theorem states that in a finite p-group the 

normaliser of a proper subgroup is always bigger than the 

subgroup itself. It gives us information about maximal 

subgroups of p-groups. 
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Theorem 7: If G is a finite p-group and H < G then 

H < NG(H). 

Proof: It is easily checked that NG/K(H/K) = NG(H)/K. 

Let G be a minimal counter-example and let H be a 

subgroup of G where NG(H) = H. 

By the minimality, H contains no non-trivial normal 

subgroup of G.  Since NG(H) contains Z(G) we get a 

contradiction. ☺ 

 

Corollary: In a p-group, subgroups of index p are normal. 

Proof: By Lagrange’s Theorem, a subgroup of index p 

must be maximal – that is, there is no subgroup strictly 

between it and the whole group. So if |G:H| is prime, 

NG(H) = G, which is just another way of saying that H is 

normal. ☺ 

 

Theorem 8: If G is a finite p-group of order pr then it has 

at least one subgroup of order ps for every s  r. 

Proof: Prove this by induction on r. 

Suppose |G| = pr+1 and 1  s  r + 1. 

Since Z(G) is non-trivial it has a subgroup K of order p. 

(Abelian groups have subgroups of every possible order.) 

Now subgroups of the centre are normal and so |G/K| = 

pr. By induction G/K has a subgroup H/K of order ps−1 

whence |H| = ps. ☺ 

 

Corollary to Theorem 7: Maximal subgroups of 

 p-groups are normal. ☺ 
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§10.6. The Sylow Theorems 
 The following is one of a very famous trilogy of 

theorems first proved by the Norwegian mathematical 

Ludwig Sylow. 

 If |G| = pnm where p is prime and (p, m) = 1 a Sylow 

p-subgroup is one of order pn. The following proof of their 

existence is due to Helmut Wielandt. 

 

Theorem 8 (SYLOW’S FIRST THEOREM): 

If |G| = prm, where p, m are 

coprime, then G has at least 

one subgroup of order ps for 

all s  r. 

Proof: Suppose |G| = prm 

where p is prime. 

Suppose that  p is coprime to 

m and let  X  be the set of all subsets of size pr. Then G 

acts on X by the action 

S  g = Sg = {sg | s  S}. 

 Now #X = 






prm

pr  which is coprime to p. 

Hence for some S  X, #SG is coprime to p. 

 

 Let P = (S) be the stabiliser of S.  Then |G:P| is 

coprime to p and hence  pr divides |P|. 

 

 Now if s  S, sP  S and so |P|  pr. Hence |P| = pr.  

Finally, since a p-group of order pr contains at least one 
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subgroup of order ps for all s  r, the same is true for G. 

☺ 

 

Theorem 9 (SYLOW’S SECOND THEOREM): 

The Sylow p-subgroups of a finite group G are conjugate 

to one another. 

Proof: Let |G| = pnm where p does not divide m and where 

n > 0. 

Let P be a Sylow p-subgroup of G. 

So |P| = pn and |G:P| = m. 

Let P, Pg2, …, Pgm be the left cosets of P. 

Make X = {P, Pg2, …, Pgm} into a G-set by defining 

(Pgi)  g = P(gi g). 

There is just one orbit, the whole of X, and the stabilisers 

therefore have size pn. In fact they are all conjugate, 

because if g  Pgi then g−1Pg = (Pgi) (the LHS is a subset 

of the RHS and they have the same size). 

 

Let Q be another Sylow p-subgroup of G.  Then X, the set 

of left cosets of P, can be regarded as a Q-set in the same 

way as above. 

 The size of at least one orbit of X under this action, 

say the one containing Pgr, is not divisible by p. 

Let R = Q  (Pgr). 

This is the stabilizer of  Pgr  under the Q-action.  

Hence the size of the orbit divides pn and so is 1. 

It follows that R = Q and so Q = (Pgr) = gr
−1Pgr. ☺ 
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Theorem 10 (SYLOW’S THIRD THEOREM): 

The number of Sylow p-subgroups of G is congruent to 

1, modulo p, and divides m. 

Proof: Let |G| = pnm where p does not divide m and where 

n > 0. 

Let P be a Sylow p-subgroup of G. 

So |P| = pn and |G:P| = m. 

Let N = NG(P) and let Y be the set of left cosets of N in 

G. The number of Sylow p-subgroups is the number of 

conjugates of P, which is |G:N|. 

Since P  N, |G:N| divides m. 

Let P act on Y as above. The sizes of the orbits are 

powers of p and, unless they are 1, they are multiples of 

p. So it remains to show that there is only one orbit of 

size 1. 

 

Suppose Ngx = Ng for all x  P. 

Then gxg−1  N for all x  P and so Pg−1
  N. 

Let Q = Pg−1
. Since Q  NG(P), PQ  NG(P). 

Hence PQ/P  Q/(PQ). 

It follows that |PQ| is a power of p. 

But, since P is a maximal p-subgroup of G, it follows 

that PQ = P, or in other words, P = Q. 

Hence Pg−1
 = P and so g  N. 

So {N} is the only orbit of size 1. ☺ 
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§10.7. Applications of Sylow’s Theorems 
Theorem 11: Suppose |G| = paqb where p, q are distinct 

primes with p < q and a  2. Then G has a normal Sylow 

q-subgroup. 

Proof: Suppose Q is a Sylow q-subgroup and let n be 

the number of Sylow q-subgroups of G. 

Then n | p2 and n  1(mod q). 

 If n = p2 then p2  1(mod q) and hence q divides 

either p − 1 or p + 1. Both are impossible since p < q.  

We get a similar contradiction if n = p. Hence n = 1 and 

so Q is normal in G. ☺ 

Corollary: If |G| = pq, where p, q are primes and p < q, 

then G is either cyclic or it is 

A, B | Aq, Bp, B−1AB = Ar where r  1(mod q). ☺ 
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EXERCISES FOR CHAPTER 10 
EXERCISE 1: Consider the G-set X where 

G = {1, 2, 3, ... , 12} and X = {a, b, c, .. , g} and where 

the action is given by the table: 

 a b c d e f g 

1 a b c d e f g 

2 c g f b e a d 

3 f d a g e c b 

4 f d a g e c b 

5 a b c d e f g 

6 c g f b e a d 

7 a b c d e f g 

8 c g f b e a d 

9 f d a g e c b 

10 c g f b e a d 

11 f d a g e c b 

12 a b c d e f g 

(a) Find the orbits; 

(b) Find the stabilisers of c and of e; 

(c) Find a normal subgroup, H, of G such that G/H is 

isomorphic to a subgroup of the group of permutations 

on X. 

 

EXERCISE 2: Consider the group 

G = {I, (12)(34), (13)(24), (14)(23), (12), (34), (1324), 

(1423)} acting in the natural way on X = {1, 2, 3, 4}. 

(a) Find the orbits; 

(b) Find the stabiliser of 3. 
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EXERCISE 3: Let G = A4 and let 

X = {(123), (132), (124), (142), (134), (143), (234), 

                                                                               (243)}, 

the set of all 3-cycles in A4. Let the action be given by 

x  g = g−1xg. 

(a) Find the orbits; 

(b) Find the stabiliser of (123). 

 

EXERCISE 4: G is a non-abelian group of order 8 with 

exactly one element, z, of order 2. 

Let X = {{x, x−1} | x  G and x  x−1 } and make X into a 

G-set by defining: 

{x, x−1}  y = { y−1xy, y−1x−1y} for x, y  G. 

 

(a) Prove that |Z(G)| = 2. 

 

(b) Prove that Z(G) = {1, z}. 

 

(c) Prove that, except for 1 and z, the elements have 

      order 4. 

 

(d) Find the number of elements in X. 

 

(e) Prove that X has at least one orbit of size 1.  

 

(f) Prove that there exist a, b  G such that 

  (i) b−1ab = a−1 and 

  (ii) b2 = a2 = z. 
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(g)       Prove that a−1ba = b−1. 

 

(h) Find the number of orbits of X. 
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SOLUTIONS FOR CHAPTER 10 
 

EXERCISE 1: (a) {a, c, f}, {b, d, g}, {e}; 

(b) {1, 5, 7, 12}, G;   (c) H = {1, 5, 7, 12}. 

 

EXERCISE 2: (a) there is just one orbit (the action is 

transitive);  (b) {I, (12)}. 

 

EXERCISE 3: (a) {(123), (142), (134), (243)}, {(132), 

(124), (143), (234)}; (b) {I, (123), (132)}. 

 

EXERCISE 4: 

(a) Since G is non abelian |Z| < 8. Since G is a p-group, 

|G| > 1. Since G/Z(G) is not cyclic, |Z(G)|  4. Hence 

|Z(G)| = 2. 

 

(b) Let Z(G) = {1, a}. Since a has order 2 we must have  

a = z . 

 

(c) The other 6 elements of G must have orders dividing 

8 but bigger than 2. They can’t be of order 8 because then 

G would be cyclic. Hence they must have order 4. 

 

(d) The only elements which are equal to their inverses 

are 1 and z so X must consist of the remaining 6 elements 

grouped in pairs.  Hence X has 3 elements. 
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(e) The size of the orbit of   X is |G:()| and so must 

divide 8. Hence the orbits of X must have size 1 or 2 and 

so one of them, at least, must have size 1. 

 

(f) Let {a, a−1} be an orbit of size 1 and let {b, b−1} and 

{c, c−1} be the other two elements of X. 

Hence the elements of G are 1, z, a, a−1, b, b−1, c, c−1. Since 

{a, a−1}  b = {a, a−1} we must have b−1ab= a or a−1.  If 

b−1ab = a then CG(a) must contain at least the 5 elements 

1, z, a, a−1, b and so must be the whole of G. 

 

But this would mean that a  Z(G), a contradiction. 

Hence b−1ab = a−1. Since  a  and  b  have order, both a2 

and b2 must have order 2 and so must both equal z. 

 

(g) From the equation b−1ab = a−1 and b2 = a2 we deduce 

that a−1ba = (b−1ab)ba = b−1(ab2a) = b−1a4 = b−1. 

 

(h) The stabiliser of {b, b−1} contains at least the 5 

elements 1, z, a, b, b−1 and so must be the whole of G.  

Hence {b, b−1} forms an orbit of size 1. (This set contains 

2 elements of G but, since the elements of X are unordered 

pairs {g, g−1}, it is only one element of X.)  

 This just leaves {c, c−1} which must therefore form 

an orbit of size 1. Hence X has 3 orbits, all of size 1. 

 


