10. SYLOW SUBGROUPS
§10.1. Sylow Subgroups

Let G be an abelian group written additively. If p is
a prime then the Sylow p-subgroup is defined to be:
Sylp(G) ={g € G | p"g = 0 for some n}. It is easy to show
that this is a subgroup.

Written multiplicatively it becomes

{g € G|gP" =1 for some n}.
This is the set of all elements whose order is a power of p
but if G is non-abelian this set is usually not a subgroup
and has no significance.

Example 1: If G = S; then {g € G | g2" = 1 for some n}
={l, (12), (13), (23)}, which is certainly not a subgroup.

If p is prime, a p-group is a group where the order
of every element is a power of p. If G is a finite p-group
then its order is a power of p. This is because, if |G| was
divisible by any other prime, there would have to be an
element of that order.

If G is a finite group and p" is the largest power of
p that divides |G| then, by Lagrange’s Theorem, the
largest possible order for a p-subgroup will be p". But
Lagrange’s Theorem does not guarantee that this
maximum will be attained. However, it is indeed true, as
| will show. If p"is the largest power of p that divides |G|
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then G has a subgroup (possibly
many) of order p". They are called
the Sylow p-subgroups of G,
named after the Norwegian
mathematician Ludwig Sylow
[1832 — 1918].

The three Sylow theorems
not only assert the existence of
Sylow subgroups for all primes
but also give information about the numbers of Sylow
subgroups. We will not follow Sylow’s original proofs,
but instead use a proof due to Wielandt that uses the
concept of groups acting on sets.

810.2. Actions of Groups on Sets
If G is a group, a G-set is a set, X, together with a
function *: X x G — X such that:
(1) x* 1 =xforall x e X and
(2) (x = g) = h=x=*(gh) forall x € X and
g, heG.
If X is a G-set we say that G acts on the set X.

A G-set is a sort of primitive vector space. The
underlying set is just a set, not an abelian group, and the
scalars come from a group, not a field. Instead of writing
Av we write multiplication by a scalar as A * v. The fact
that we have not so many axioms for a G-set as we do for
a vector space reflects the fact that the set X has no
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structure itself and the system of scalars here is a group,
which has less structure than a field.

Another similar situation is where we have a

representation of a group. Here the underlying structure is
a vector space, while the scalars are the elements of a

group.

The stabiliser of a subset Y of a G-set X is defined to be
o(Y)={ge G|y*xg=xforally € Y}.
In the case where Y = {x} we write o(x) instead of o({x}).

Example 2: Let X ={1, 2, 3,4, 5,6} and G = Ds.
Define x * g as follows:

* 1 A A2 A° B AB AB A’B
1(1/2]1]2]6/ 3] 6 | 3
2{2]1]2[1[3[ 6] 3| 6
3[3l6[3[6[2[1] 2 |1
4144445/ 5]| 5[5
5|5/5/5|5 /4] 4| 4| 4
6[6/3/6 |3 [1] 2] 1 ]2

o(1) ={L, A%};

o(2) ={L, A%};

o(3) ={L, A%};

o(4) = {1, A A% A%},

o(5) = {1, A, A% A%},

o(6) = {1, A%};

o(X) = {1, A%}
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Theorem 1: (1) If X isa G-setand Y < X then o(Y) is a
subgroup of G.

(2) o(X)< G and G/o(X) is isomorphic to a
group of permutations on X.
Proof: The fact that o(Y) is a subgroup of G is easily
checked.
If S(X) denotes the symmetric group (the group of all
permutations) on X the function 0: G — S(X) defined by
0(g)(x) = x * g is a group homomorphism whose kernel is
o(X). The image is a subgroup of S(X). %©

A G-set X is defined to be faithful if o(X) is trivial.
Example 2 is an example of a non faithful (we never say
‘unfaithful’) G-set.

If X is a faithful G-set the group G is actually
isomorphic to a group of permutations because o(X) is
trivial. Think of the group of permutations as a ‘faithful
copy’ of the group G, being isomorphic to it. If a G-set
i1sn’t faithful the group of permutations is a scaled down
version of G, being isomorphic to G/c(X).

At the other extreme, a G-set X is defined to be
trivial if o(X) = G. Here g * x =x for all g € G and all
X e X,
(This is similar to the trivial representation of a group.)
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Theorem 2 (CAYLEY): Every finite group G is
iIsomorphic to a group of permutations on G.

Proof: G acts on itself by defining g * h = gh and the
resulting G-set is faithful. (In other words, right
multiplication by an element of G permutes the elements
of G.) %O

This action is called the regular action of G on G. It is
similar to the regular representation.

Examples 3:
(1) The conjugation action of G on G defined by
X*g=x9= g—lxg_

(2) An isometry f:R® — R?® is a distance preserving
transformation. They are maps of the form f(x) = Ax + b
where A is an orthogonal 3 x 3 matrix and b € R3. The
set of all isometries of R® form a group G under
composition and we can think of R3 as a G-set with f = v
defined as f(v).

810.3. Orbits

Suppose X is a G-set and let x € X. The set of all
those elements of X that can be reached from x by
multiplying by some element of G is called the orbit
containing X. In fact the relation ~ defined on X by x ~y
if x = g =y for some g € G, is an equivalence relation and
the equivalence classes are the orbits. We denote the orbit
containing x by x©. The set of orbits is denoted by X/G.
A G-set is defined to be transitive if it has only one orbit.
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Examples 4:

(1) If G is viewed as a G-set under the action of
conjugation then the orbits are the conjugacy classes
and the stabiliser of g is the centraliser Cg(Q).

(2) If H< G then G can be viewed as an H-set under the
action g * h = gh. The orbits are the right cosets of H
and the stabiliser of g is the trivial subgroup.

Theorem 3: If G is finite and X is a G-set

#x° = |G : 6(X)|.
Proof: x * g =X * h <> x * (gh™?) =x

< ght e o(x)

<> go(X) = ho(x).
So f(x * g) = go(x) is a well-defined 1-1 and onto map
between the orbit of x and the set of right cosets of the
stabiliser o(x). ¥ ©

This generalises the result that says that the number of
conjugates is the index of the centraliser.

Example 2 (continued):

The orbits are {1, 2, 3, 6} and {4, 5}.
S02¢={1,2,3,6}and #2¢ =4, |5(2)| = 2, and
IG:c(2)| = 4. #4°=2=|G : 5(2)|.
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§10.4. Cauchy’s Theorem
Let X be a G-set. Then Xg is defined to be
{x e X|x*xg=xforallg € G}.

Example 5: Let G =Sz and X = {1, 2, 3, 4, 5} where G
acts on X in the natural way. Then since the symbols 4, 5
are always fixed by the elements of G and the others are
not, X¢ = {4, 5}.

Theorem 4: If G is a finite p-group and X is a finite G-
set then |X| = |Xg| (mod p).

Proof: Suppose |G| = p" and let x € X and let x® denote
the orbit of x.

Then p" = |G| = |Gio(X)|.lo(X)| = [X°[.lo(X)].

Either |x| = 1 or [x®| = O(mod p).

But [x®| = 1 means that x € Xg. Since X is the disjoint
union of orbits the result follows. %©

Corollary: If G is a finite p-group and X is a finite G-set
whose size is not divisible by p then there exists an
element x € X such thatx * g=xforall g € G.

This gives another way of expressing the proof of
Cauchy’s theorem.

Theorem 5 (CAUCHY): If p is a prime divisor of |H|
there exists an element of H of order p.

Proof: Apply the corollary to G = (A | AP) and
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X={(g1, ..-, 9p) | each g; € H with not all g; = 1,
but the product g;...g, = 1}.
Then |X| = |[HPP - 1, which is not divisible by p.

The action of G on X is given by:

(91, -, Gp) * A= (92, ., Op, G1).
By the corollary there exists (93, ... , gp) With

(91, -, 9p) * A= (01, ..., Gp).
S0Qg1 =0z =..=0p Call thisg. ThengP = 1. ¥ ©

Example 6: If |G| = 105 = 3 x 5 x 7 there must be
elements of orders 3, 5 and 7. And of course there’s the
identity with order 1. The other possible orders, by
Lagrange’s Theorem, are 15, 21, 35 and (only if G is
cyclic) 105. But unlike 3, 5 and 7 there are no guarantees.

By Lagrange’s Theorem, if |G| = p", where p is
prime, the orders of the elements must be powers of p.
The converse also holds. If, in a finite group, the orders
of all the elements are powers of p then the order of the
group must be a power of p. For if not, and q is a different
prime divisor of the group order, there would have to be
an element of order g.

Example 7: As has order 60 but has no subgroup of order
30, even though 30 divides 60 (but of course it isn’t prime
power). The reason why no such subgroup exists is
because such a subgroup would have to be a normal
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subgroup (subgroups of index 2 are normal) and As is
simple.

§10.5. Normalisers
If H< G and g € G we define
H9=g*Hg={g"hg|h e H}.
It is called the conjugate of H by g. The normaliser of a
subgroup H < G is defined by
Ne(H) ={g | H%=H}.

It is easily checked that H < Ng(H) < G, and in fact Ng(H)
Is the largest subgroup in which H is normal. It is also
obvious that Ny (G) always contains Z(G).

Theorem 6: The number of conjugates of H in G is

|G : Ng(H)|.
Proof: Let N = Ng(H), let X be the set of conjugates of H
in G and let R be the set of left cosets Ng in G. We define
a function f: R — X by f(Ng) = He.
If Ng1 = Ng3 then g, = bg; for some b € N.

Then H92 = Hb91 = HI1, Hence f is well-defined.

If H92 = HYt then H9291 ™ = H and s0 gog:* € N.
Hence Ng; = Ngx.

We have thus shown that f is 1-1.

Clearly fis onto. Hence [X|=|R|=|G: N|. ¥©
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A maximal subgroup of G is a subgroup H < G
where there is no subgroup K for which H < K < G.
Minimal subgroups are defined similarly. By Lagrange’s
Theorem subgroups of prime order are minimal. By
Cauchy’s Theorem the converse is true: minimal
subgroups have prime order.

Also, by Lagrange’s Theorem, subgroups of index
p are maximal. Here the converse is not always true. A
maximal subgroup may not have prime index. However,
we’ll show that it’s true for finite p-groups.

For p-groups the converse of Lagrange’s Theorem holds.
If |G| = p" then G has subgroups of order p" for all r with
0<r<n.

Example 8: If G = S, and H = S3, fixing the symbol 4,
then H has index 4 in G. However it is maximal. The
reason is as follows. If K was a subgroup between H and
G then |G:K| =2. So |[K| = 12 and, having index 2 it would
have to be normal in G. But the only normal subgroup of
order 12 in Sy is A4 (example 17 of chapter 6), so K = A,.
But H contains (123) and so isn’t a subgroup of As. SO we
get a contradiction.

The next theorem states that in a finite p-group the
normaliser of a proper subgroup is always bigger than the
subgroup itself. It gives us information about maximal
subgroups of p-groups.
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Theorem 7: If G is a finite p-group and H < G then

H < Ng(H).
Proof: It is easily checked that Ngk(H/K) = Ng(H)/K.
Let G be a minimal counter-example and let H be a
subgroup of G where Ng(H) = H.
By the minimality, H contains no non-trivial normal
subgroup of G. Since Ng(H) contains Z(G) we get a
contradiction. % ©

Corollary: In a p-group, subgroups of index p are normal.
Proof: By Lagrange’s Theorem, a subgroup of index p
must be maximal — that is, there is no subgroup strictly
between it and the whole group. So if |G:H| is prime,
Ng(H) = G, which is just another way of saying that H is
normal. % ©

Theorem 8: If G is a finite p-group of order p' then it has
at least one subgroup of order p* for every s<r.

Proof: Prove this by induction on r.

Suppose [G|=p™tand 1 <s<r+1.

Since Z(G) is non-trivial it has a subgroup K of order p.
(Abelian groups have subgroups of every possible order.)
Now subgroups of the centre are normal and so |G/K| =
p". By induction G/K has a subgroup H/K of order p*
whence |H| = p°. %©

Corollary to Theorem 7: Maximal subgroups of
p-groups are normal. ©
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§10.6. The Sylow Theorems

The following is one of a very famous trilogy of
theorems first proved by the Norwegian mathematical
Ludwig Sylow.

If |G| = p"m where p is prime and (p, m) =1 a Sylow
p-subgroup is one of order p". The following proof of their
existence is due to Helmut Wielandt.

Theorem 8 (SYLOW?’S FIRST THEOREM):
If |G| = p'm, where p, m are
coprime, then G has at least
one subgroup of order p* for
alls<r.
Proof: Suppose |G| = p'm
where p is prime.
Suppose that p is coprime to
m and let X be the set of all subsets of size p". Then G
acts on X by the action

S*xg=Sg={sg|s e S}

pmy . :
Now #X = or which is coprime to p.

Hence for some S € X, #S€ is coprime to p.

Let P = o(S) be the stabiliser of S. Then |G:P| is
coprime to p and hence p" divides |P|.

Now ifs € S,sP = S and so |P| <p". Hence |P| =p".
Finally, since a p-group of order p" contains at least one
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subgroup of order p* for all s < r, the same is true for G.
%O

Theorem 9 (SYLOW’S SECOND THEOREM):
The Sylow p-subgroups of a finite group G are conjugate
to one another.

Proof: Let |G| = p"m where p does not divide m and where

n> 0.

Let P be a Sylow p-subgroup of G.

So |P| = p"and |G:P| = m.

Let P, Pgy, ..., Pgm be the left cosets of P.

Make X = {P, Pgo, ..., Pgm} into a G-set by defining
(Pgi) = g = P(gi 9).

There is just one orbit, the whole of X, and the stabilisers

therefore have size p". In fact they are all conjugate,

because if g € Pgithen g~Pg = o(Pg;) (the LHS is a subset

of the RHS and they have the same size).

Let Q be another Sylow p-subgroup of G. Then X, the set
of left cosets of P, can be regarded as a Q-set in the same
way as above.

The size of at least one orbit of X under this action,
say the one containing Pgy, is not divisible by p.
Let R =Q n o(Pgy).
This is the stabilizer of Pgr under the Q-action.
Hence the size of the orbit divides p" and so is 1.

It follows that R = Q and so Q = (Pg;) = g *Pgr. % ©
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Theorem 10 (SYLOW’S THIRD THEOREM):

The number of Sylow p-subgroups of G is congruent to
1, modulo p, and divides m.

Proof: Let |G| = p"m where p does not divide m and where
n> 0.

Let P be a Sylow p-subgroup of G.

So |P|=p"and |G:P|=m.

Let N = Ng(P) and let Y be the set of left cosets of N in
G. The number of Sylow p-subgroups is the number of
conjugates of P, which is |G:N.

Since P <N, |G:N| divides m.

Let P act on Y as above. The sizes of the orbits are
powers of p and, unless they are 1, they are multiples of
p. So it remains to show that there is only one orbit of
size 1.

Suppose Ngx = Ng for all x € P.

Thengxg™ e N forall x € P and so P9 < N.
Let Q = P9, Since Q < Ng(P), PQ < Ng(P).
Hence PQ/P = Q/(PMQ).

It follows that |PQ| is a power of p.

But, since P is a maximal p-subgroup of G, it follows
that PQ = P, or in other words, P = Q.

Hence P9 =Pandsog e N.
So {N} is the only orbit of size 1. %©
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810.7. Applications of Sylow’s Theorems

Theorem 11: Suppose |G| = p3q° where p, q are distinct
primes with p < g and a < 2. Then G has a normal Sylow
g-subgroup.

Proof: Suppose Q is a Sylow g-subgroup and let n be
the number of Sylow g-subgroups of G.

Then n|p?and n=1(mod q).

If n = p? then p? = 1(mod q) and hence q divides
either p — 1 or p + 1. Both are impossible since p <.
We get a similar contradiction if n = p. Hence n = 1 and
so Q is normal in G. %©
Corollary: If |G| = pg, where p, q are primes and p < q,
then G is either cyclic or it is

(A, B| A% BP, BTAB = A" where r = 1(mod q). ©
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EXERCISES FOR CHAPTER 10

EXERCISE 1: Consider the G-set X where
G={123,..,12}and X ={a, b, c, .., g} and where
the action is given by the table:

a b c d e f g
lla |[b |c |d |e |f |g
2|1c |g |f |b e |a |d
3|f |d|a|g |e |[c |b
41f |d |a |g |e |c |b
5la |b |c [d |e |f |qg
6|lc |g |f |b|e |a|d
71a |b |c |d |e |f |g
8|lc |g |[f [b|e |a |d
O|f |d|a |g |e |[c |b
10|c |[g |[f |[b |e |a |d
11|f |d |a |g |e |[c |b
12la |[b |[c |d |e |[f |g

(a) Find the orbits;

(b) Find the stabilisers of ¢ and of e;

(c) Find a normal subgroup, H, of G such that G/H is
isomorphic to a subgroup of the group of permutations

on X.

EXERCISE 2: Consider the group
G = {I, (12)(34), (13)(24), (14)(23), (12), (34), (1324),
(1423)} acting in the natural way on X = {1, 2, 3, 4}.

(@) Find the orbits;
(b) Find the stabiliser of 3.
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EXERCISE 3: Let G = A; and let
X ={(123), (132), (124), (142), (134), (143), (234),
(243)},
the set of all 3-cycles in A4. Let the action be given by
X * g = gxg.
(@) Find the orbits;
(b) Find the stabiliser of (123).

EXERCISE 4: G is a non-abelian group of order 8 with
exactly one element, z, of order 2.
Let X = {{x, x !} |x € Gand x = x* } and make X into a
G-set by defining:
X xF*y={yXy, yxy}forx,y e G.

(@) Prove that |Z(G)| = 2.
(b) Prove that Z(G) = {1, z}.

(c) Prove that, except for 1 and z, the elements have
order 4.

(d) Find the number of elements in X.
(e) Prove that X has at least one orbit of size 1.
(f)  Prove that there exist a, b € G such that

(i) blab=a?! and
(i) b?2=a?=z
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(@ Provethata'ba=b".

(h)  Find the number of orbits of X.
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SOLUTIONS FOR CHAPTER 10

EXERCISE 1: (a) {a, c, f}, {b, d, g}, {e};
(b){1,5,7,12},G; (c)H={1,5,7,12}.

EXERCISE 2: (a) there is just one orbit (the action is
transitive); (b) {l, (12)}.

EXERCISE 3: (a) {(123), (142), (134), (243)}, {(132),
(124), (143), (234)}: (b) {1, (123), (132)}.

EXERCISE 4:

(a) Since G is non abelian |Z| < 8. Since G is a p-group,
|G| > 1. Since G/Z(G) is not cyclic, |Z(G)| # 4. Hence
1Z(G)| = 2.

(b) Let Z(G) = {1, a}. Since a has order 2 we must have
a=z.

(c) The other 6 elements of G must have orders dividing
8 but bigger than 2. They can’t be of order 8 because then
G would be cyclic. Hence they must have order 4.

(d) The only elements which are equal to their inverses

are 1 and z so X must consist of the remaining 6 elements
grouped in pairs. Hence X has 3 elements.
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(e) The size of the orbit of a € X is |G:o(«)| and so must
divide 8. Hence the orbits of X must have size 1 or 2 and
so one of them, at least, must have size 1.

(f) Let {a, a*} be an orbit of size 1 and let {b, b-*} and
{c, c1} be the other two elements of X.

Hence the elementsof Gare 1,z,a,a™, b, b™, ¢, c™. Since
{a, a '} * b = {a, a'} we must have b-lab=aor a?. If
b~tab = a then Cg(a) must contain at least the 5 elements
1,2,a,a?, band so must be the whole of G.

But this would mean that a € Z(G), a contradiction.
Hence b~*ab = a™%. Since a and b have order, both a2
and b2 must have order 2 and so must both equal z.

(g) From the equation b~*ab = a~! and b? = a? we deduce
that a—'ba = (b~tab)ba = b*(ab%a) = b~ta* = b2

(h) The stabiliser of {b, b} contains at least the 5
elements 1, z, a, b, b™* and so must be the whole of G.
Hence {b, b=t} forms an orbit of size 1. (This set contains
2 elements of G but, since the elements of X are unordered
pairs {g, g1}, it is only one element of X.)

This just leaves {c, ¢} which must therefore form
an orbit of size 1. Hence X has 3 orbits, all of size 1.
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